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Let (A o' A I) be a compatible couple of Banach spaces in the interpolation theory
sense, We give a formula for the K,-functional of the interpolation couples (I,(A o)'

cll(A,)) or (I,(A o ), 1,(Ad) and (L,(A lI ), L,(Ad), I. 1993 Academic Press, Inc.

We first recall the definition of the Kt-functional which is a fundamental
tool in the Lions-Peetre Interpolation Theory and also in Approximation
Theory, cf., e.g., [1,2]. Let (A(H A d be a compatible couple of Banach (or
quasi-Banach) spaces. This just means that A o, A I are continuously
included into a larger topological vector space (most of the time left
implicit), so that we can consider unambiguously the sets Ao + A, and
AoIlA,. For all xEAo+A t and for all (>0, we let

K,(x; A o' A,) = inf(llxoll Ao + ( Ilx,IIA, I x =xo+x" XoE A o, x, E A d.

RecaIl that the (real interpolation) space (A o, A I )o.P is defined (0 < f) < I,
I ~ p ~ if)) as the space of all x in A o+ A, such that IIxllo.p <x where

( )

lip

Ilxllo,p= f (t °Kt(x; Ao,A,Wdt/t ,

It is welI known that the K,-functional for the couple (Lt(p), L,(p)) on a
non-atomic measure space (Q, p) is given by
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Let (.0, il) be the measure space obtained by forming the disjoint union of
a sequence of copies of (Q, Jl). Since Lp(Q, Jl; Ip) can be identified with
Lp(.o, fi), we have, for allf=(/') in L1(Jl; Itl+L x (ll; Ix)

K,(f; L,(Jl; Itl, Lx(Jl; I"J)

= sup {I (, I/,/ dJl, Eic Q, I: Jl(Ei):::;; t}

= sup {1.: K,,(fi; LdJl), L,JJl)), t i~ 0, I t i :::;; t}.

Since Lp(Jl; Ip ) and Ip(Il)) can be identified, this example is the prime
motivation for the following statement.

THEOREM I. Let (A o, A II be a compatible couple of Banach spaces.
Consider the pair (l1(Ao)J,.(Al)). Then, \lx=(xi)E/,(Ao)+I,,(Ad, if
Xi = 0 except for finitely many indices, we have

As a consequence, \Ix = (x,) E 11(A o)+ co(A I), J,ve have

Proof Let us denote by C, the right hand side of the above identity (1 ).
Then it is very easy to check that C,:::;; K,(x; 1,(Ao), Ix(A l)). Let us check
the converse. Let x be such that C, < 1. This means

;~~, {x,J~f+hi (L Ila,llAo + t i IlbiIIA,)} < 1. (2 )

We want to deduce from this the same inequality but with the inf and the
sup interchanged. This can be viewed as a consequence of the minimax
lemma (which itself is an application of the Hahn-Banach theorem). We
prefer to deduce it directly from the Hahn-Banach theorem, as follows.
This inequality (2) clearly implies (choosing t i = tU that for any non
negative sequence ~ = (~,) such that L: ~ i < 1 there is, for each index i a
decomposition Xi =~, + Pi in Ao+ A, such that

64073'1-8

~ ~ i [ (~ II ~k II AO) + t II Pill AIJ< 1. (3)
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Fix a number B > O. We show that the left side of (I) is less than I + B. We
assume that, for some n, we have x j = 0 for all indices i ~ n. Let C c R" be
the set of all points y = (y j) of the form

where xj=aj+bj,ajEAo,bjEAt.

We claim that the convex hull of C, denoted by conv( C), intersects
] - 00, I + B[ ". Otherwise, by Hahn-Banach (we separate a COnvex set
from an open convex one) we would find a separating functional ¢ and a
real number r such that ¢ < r on ] -x, + I]" and ~ > r on C. But (since
we obviously can assume r = I) this would contradict (3). This shows that
conv(C) intersects ] - 00, I + B[ ", hence we can find decompositions
X j = a7' + b7', I ~ m ~ M, and positive scalars AI, ..., Am' ..., )'M with
Lm I·m= I, such that we have for every index i

We can then set

(4)

m m

Note that xj=aj+b j. Moreover, by (4) and the triangle inequality, for
every index i

which clearly implies K,(x; 1((A o), IX!(Ad)~ 1 +B. By homogeneity, this
completes the proof of (I), and the last assertion is immediate. I

I asked B. Maurey for some help to extend the preceding statement
without unpleasant assumptions and he kindly pointed out to me the
following fact and its proof:

THEOREM 2. Let P" denote the projection from II(Ao)+IX!(A I) onto
II (A o)+ IX! (A tl l1'hich preserves the first n coordinates and annihilates the
other ones. Then

'r/XE II(A o) + 1>e(A I)

K,(x; II(A o), loc(A 1 » = sup K,(P,,(x); II(A o), Ix(A I )).

"

(5)
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Proof Fix t > O. Clearly the right hand side of (5) is not more than its
left hand side. Conversely, assume that the right hand side of (5) is < I. We
show that the left side also is less than I. To clarify the notation, if x is a
sequence of elements in a Banach space, we denote by x(k) the k th coor
dinate of x. Then, for all x as in (5) and for all n, there is a decomposition
P,,(x) = x;; + x'; such that

(6)

Let 11 be a non-trivial ultrafilter on the positive integers. We let n tend to
infinity along J71 and we denote simply by limb the various resulting limits.
Let

Observe that (6) implies

and

( L ak) + tR ~ I.
k<K

(7)

Now fix c; > O. For each integer k we can find an integer nk > k large
enough so that

Ilx~k(k )11 Ao < ak + c;2 - k

Then we can define

xo(k) = x~k(k)

and

and X I (k) = x';k(k).

Clearly x(kl=xo(k)+xl(k) for all k, and moreover

VK I Ilxo(k)IIAo+tsuPllx,(k)IIAl< L ak+E2 k+t(R+E)
k<K k<K k<K

hence by (7)

~ I + E(2 + t).

Since this holds for all K, we conclude that xoE/I(A o), XI E/x(Atl, and
Ilxoll'dAo' + t Ilx,llit(Ail ~ t + E(2 + t), and since E> 0 is arbitrary we indeed
finally obtain

COROLLARY 3. The formula (I) in Theorem
restriction on xE/I(Ao)+/~(Atl.

is valid without any
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Remark 4. The formula (I) remains valid with the same proof as above
if the spaces A o and A, are replaced by families of Banach spaces
respectively (A~) and (A';). Let us denote by I I( {A~}) and r,J {A;'}) the
corresponding spaces (these are sometimes called the direct sum of the
families (A~) and (A';), respectively, in the sense of I) and L,). This gives
us the following generalized version of (I ): for all x in I) ({A;; }) + Ix ({A;' })

We now reformulate our result in the function space case.

THEOREM 5. Let (A o, A)) be a compatible couple o{ Banach spaces.
Let (Q, .w, fJ.) be an arbitrary measure space. Consider a function f in
L,(fJ.; Ao)+Lx(fJ.; AI)' where we define the Banach space valued Lp-spaces
in the Bochner sense. Then, for all t > 0

Kr(f; L)(j1; A o ), L,,(j1; Ad)= sup f K.p'UJl(f(W); A o' AddfJ.(w), (9)
j.p UI''''; r

where the sup runs over all non-negative measurahle functions ¢J defined on
Q with integral not more than t.

Pro(){. We may clearly assume that the measure space is a-finite. Now
given a function j~E LI(Q, ,w, j1; A o), we know (by definition of Bochner
measurability, see, e.g., [5, p. 42]) that there is a countable measurable
partition of Q into pieces on each of which the oscillation of fo for the
norm of A o is small. Similarly, given!l E Lx (Q, .w, j1; A)) we know that
there is a measurable partition of Q into pieces on each of which the
oscillation of fl for the norm of A, is small. On the other hand, since the
measure space is a-finite, it admits a countable measurable partition into
sets of finite measure, so that, by refining the partitions, we can always
assume that the sets have finite measure (so that the conditional expecta
tion makes sense) and that the same partition works for both fo and fl'
Consequently, for each c > 0 there is a countable measurable partition of Q
into sets of finite measure on each of which both the Ao-oscillation of fo
and the A) -oscillation of fl are less than c. The point of this discussion is
the following. GivenfEL\(Q,d,/A; Ao)+Lxc(Q,.w,/A; Ad, we can find a
a-subalgebra f1J c.w generated by a countable measurable partition of Q
into sets of finite measure such that, if we denote by f"iI the conditional
expectation off with respect to f1J, we have
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This reduces the proof of (9) to the case when sf is generated by a coun
table measurable partition of Q into sets of finite measure. In that case, we
can identify L1(Q, sf, /1: Ao) and Lx(Q, ,sf, /1; Ad with suitable sequence
spaces and (9) follows easily from (8) (by incorporating the weight of each
set of the partition into the norm of the corresponding coordinate). I

In the situation of Theorem 5, let us assume (for simplicity) that the
intersection AonA I is dense in A o. Then (cf. [1, p. 303]) we can write for
all xEAo+A J

K,(x; A o, Ad= tk(x, s; A o, Ad ds,

where the k-functional k(x, s; Ao, AI) is a uniquely defined non-negative,
non-increasing, right-continuous function of s > O. In the case of the
(scalar valued) couple (L I' Lx) over a O"-finite measure space, we find
(cf. [1, p. 302] )

k(x,s; L1,Lx)=x*(s),

where x* is the non-increasing rearrangement of Ixl.
Recall the notation x**(t)=t- I f~x*(s)ds, so that K,(x; L1,L"J=

tx**(t). If 0 < p ~ 00, 1~ q ~ 00 we also recall the definition of the quasi
norm Ilxllp,q in the Lorentz space L p•q over a O"-finite measure space as

with the usual convention when q = 00.

If 1 < P~ 00, 1 ~ q ~ cx), then Hardy's classical inequality shows that this
is equivalent to the norm

(Ix. dt)liq

Ilxll (p.q) = 0 [t li"X**(t)]q t

with the usual convention when q = 00. In particular L", p is the same as L"
with an equivalent norm.

With this notation, we can state

COROLLARY 6. In the same situation as Theorem 5, assuming (for
simplicity) that the intersection Ao n A I is dense in Ao, we denote for all f
in L 1(Q,.r4,j1; A o)+L,(Q,.r4,j1; Ad,

'PI(s, w) = k(f(w), s; A o, A J).
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Then we have

GILLES PISIER

K,(f; L1(Q, II; Ao), Lx(Q, II; A d)

=K,('Pr ; L1(Qx ]O,x[, dllds), Lx(Qx ]0, 00[, d{lds)). (10)

Moreover, for 1 < p ~ 00, I ~ q ~ 00, and lip = 1 - 0, we have

( 11 )

where the Lorentz space norm is relative to the product space
(Qx ]0, 00[, dllds).

Proof. By (9) we have

K,('PI ; L1(Q x ]0, wL dll ds), Lx(Q x ]0, xL dll ds))

= sup f K,p(w)('P/(-,w); L1(]0, w[,ds), Lw(]O,XJ[,ds))dll(W)
J,p d",,;,

using (9) again this yields (l 0) since we have obviously

K,( 'P/ (·, w); L I ( [O,x[, ds), L x ( ]0,00[, ds))

=r 'P/(s,w)ds=K,(f(w); Ao,A 1)·
o

Clearly (11) is an immediate consequence of (10) by applying
K,(x; L 1, L"J = tx**(t) on the product space with x = 'Pr · I

Remark 7. As an application of Corollary 6, one can derive the
well known Lions-Peetre results on interpolation between vector valued
Lp-spaces in a rather transparent way, for example, in the situation of
Corollary 6, if q = p and lip = 1 - 0, we have

(L1(Q, ;;,1,11; Ao), Lx(Q, ,<.1, II; Ad)o,p=Lp(Q, ,<.1,11; (Ao,A1)o,p)'

Indeed, when p = q > 1 Hardy's classical inequality (see [1, pp. 124 and
219]) shows that for all x in Ao+A 1, Ilk(x,s; Ao,AdIILp(d,) is equivalent
to the norm of x in (A o, A I )1I,p' Therefore, since II 'PIli (p,p) is equivalent to
II 'Pfll Lp(di'ds)' it is equivalent to the norm off in Lp(Q, ,<.1, II; (A o, A do. p)'

In fact, one finds more generally that if lip = 1 - e then for all 1~ q ~ p
the following well known inclusion holds

Moreover, when q ~ p the reverse inclusion holds, We refer to [4] for
counterexamples to the other inclusions,
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Remarks. (i) Using the "power theorem" (cf. [2, p. 68]) it is easy to
deduce from Theorem 5 an equivalent of the K,-functional for the couple
L p (il,.91,j1;A o), L x (il,d,j1;Ad for O<p<oo, when (Ao,Ad are
Banach spaces.

(ii) More generally, if I ~PO,PI < 00 then there are simple natural
quantities known to be equivalent to the K,-functional for the couple
L po(il,.91,j1;A o), L p ,(il,,91,j1; Ad. In the case PI is finite, these can be
derived easily from the trivial case Po = P I and the power theorem, and this
argument even works when (A o, A I) are quasi-Banach spaces. This
application of the power theorem was pointed out to me by Quanhua Xu,
but Cwikel informed me that this was already known to J. Peetre (d. also
[8]), Apparently however this approach does not yield the case PI = co
which is the main point of the present paper.

We give as an application a generalization of an embedding theorem for
L p spaces, namely the following. If (il', d', j1') is an arbitrary measure
space, we can define a linear operator

as follows (here 0 < P < 00 and we intentionally denote below by w a
positive real number instead of s and change the notation ds to dw)

Then it is a simple exercise to check that Tp is an isometric embedding, i.e.,
we have

( 12)

Actually, if we denote by m the product measure dm = df./ x dw, we have

\;/(>0 (13)

Similarly, let us denote by v the counting measure on the set N* of all
positive integers. Then the preceding embedding has the following discrete
counterpart. We define a linear operator

as follows (0 < P < co)

SpU )(w', n) = n -lip f(w').
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Again, it is easy to check that
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Moreover, if we denote, for any positive real r, by [r] the largest integer
n < r, and if we denote by m' the product measure dm' = dfl' x dv, we clearly
have

VI >0

We now return to the abstract case

THEOREM 8. In the same situation as Theorem 5, assume (for simplicity)
that the intersection AonA 1 is dense in A o, and let t <P<x, 8= t -lip.
We define more generally two linear operators

Tp: (Au, A I )o.P -+ (L I (]O, CfJ [, dw; Au), Lx (]O, CfJ [, dw; A J) )0, X

Sp:(A u, Ado.p-+(Lt(N*, dv; Au), Lx(N*, dv; Ad)o.C>'.

= (It(Aol, Ix(Al»O.7~

by setting

and

'tit >0

Then we have Vx E (Au, A I lo,p

II Tp(xlll (L,t ]0. x.(, dw; Aol.L,( )O,f.(. dw; All)"" = p' (foX k(x, s; Au, A I)P dS) liP.

(14 l

Therefore (by Hardy's inequality), Tp is an isomorphic embedding. Similarly,
Sp is an isomorphic embedding.

Proof Let f(w) = w·l/px. Then we have

'Pf(s, w) = w -l/Pk(x, s; Au, A I)'

Note that by (13) we have

'Pi(t) = t- Ilp (LX k(x, s; A o, AdPds fP.

Hence 'Pi*(t)=p't-t/P(J; k(x,s; Ao,AdPds)IP and (14) follows from
( 11) with q = CfJ. The discrete case is now easy and left to the reader. I
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Remark 9. We do not see how to completely extend the preceding facts
in the case of quasi-Banach spaces A o, A I' with r < 1 and with Lr(A o)

instead of LdA o). However, the easy direction in Theorems 1 or 5
obviously extends up to a constant. For instance, there is a constant C such
that VXElr(Ao)+lx(Atl and Vt>O

(15 )

To illustrate the possible uses of Theorem 8, we conclude by an applica
tion to the complex interpolation method which develops in a more
abstract wayan idea presented in [9] in the context of H P spaces. Again,
let (A o, A I) be a compatible couple of Banach spaces included in a
topological vector space V. Assume moreover that there is a quasi-Banach
space B also included in V and such that for some 0 < a < 1 we have

Ao=(B,A1)a.l·

Let r = I-a. As a typical example of this situation the reader should think
of B=L" Ao=L

"
Al =LOQ' For any xEAo+A 1 , we denote by SO(x) the

sequence (x/n)n>O and more generally for any complex number z we
denote by S=(x) the sequence (xln ' - =)n>O' Moreover we make the rather
restrictive assumption that SO defines a bounded operator from A o into
Ur (B), I" (A I ) )a. x . The reader will easily check (using (12) and (13) above)
that this holds for the preceding example with B = L r • Then we claim that
there is a bounded inclusion mapping

VO < 8< 1
1

if - = 1 - e.
p

(16 )

See [7 ] for a somewhat related result. Let us sketch the proof of (16).
Consider an element x in the open unit ball of the space (A o, A I )1/' Then
there is an analytic function I with values in Ao+ A I on the strip
0< 9t(z) < 1, which is continuous in the closed strip, such that I( 8) = x and
such that for all real numbers t,fUt) is in the unit ball of A o and l(l + it)

is in the unit ball of A 1 (and their respective norms tend to zero when t
tends to infinity). We now apply Stein's interpolation principle to the
analytic family of operator S=. Consider g(z)=S=/(z). Note that g(8) =

Sp(x). For simplicity, let us denote C = Ur(B), lx(A tl)~.x' By our restrictive
assumption we have sup, Ilg(it)lIc~co (where Co, C I , C2' etc., are
constants) and trivially we have SUPt II g(l + it)I!tr(Ail ~ 1. Therefore, we
obtain II g(8)11 C,I, (Aillo ~ C 1 • Since (C, l." (A tl)o C (C, l.x(A Jl )1/. x' we deduce
from the reiteration principle (cr. [2, p. 48]) that if h = (1 - 8) a + 8 we
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have Ilg(8)11/,(B)" x(Aillh.x ~C2' By Remark 9 and the same computations as
above we have

Ilxll (Ao,Ailo.? ~ C3 IISp(x)11 (/,(BI./x (A,»)b'

so that (recalling g(8)=Sp(x)) we finally find Ilxll(Ao,AilO?~c4' This
concludes the proof of the above claim (16), (The reader should easily fill
the minor technical gaps that we left to avoid obscuring the idea,)

Now assume given a closed subspace S c V and let

fJ= Sn B.

Let Qo=Ao/So, Q]=A]/S], and Q=BlfJ be the associated quotient
spaces. Clearly (Qo, Q I) form a compatible couple since there are natural
inclusion maps

Qo -+ VIS and

and similarly Q -+ VIS. Obviously, after composItion with the quotient
mappings in the above assumption, we get a bounded map from Ao into
(Q, Q I )a, I' hence (since the latter vanishes on So) we have a bounded map
from Qo into (Q, Qd",\, Similarly, we find that the same restrictive
assumption as above is satisfied by the quotient spaces and therefore we
conclude that

'110 < 8 < 1 'f 1I - = 1-8.
P

( 17)

An alternative to the above restrictive assumption is to assume the
following: there is a Banach space Dc (A o +A dN * and a constant c such
that

(18 )

and

(19)

Then (16) holds. Indeed with the same notation as above, if Ilxll (Ao,Ailo < 1,
this gives Ilg(8)II(DJx(Aillo~Cl> hence a fortiori Ilg(8)II(D" x IAil,ox ~C2'

therefore by (19), II Sp(x )1/ (/1(Aol,/x(Aillox ~ C3, and by Theorem 8, finally
IIxll(Ao,Ailop~c4' The assumptions (18) and (19) are slightly more general
than the preceding one but seem less easy to verify in practice.

In [9], the preceding argument is applied in the particular case Ao = L],
Qo=L1IH 1

, AI =L x , Q, = Loc./H oo to give a new proof that (17) holds in
this case, which is originally due to Peter Jones [6]. We refer the reader
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to [9J for more information on this topic. Concerning for instance
HI'-spaces with several complex variables or Sobolev spaces on R" (cf.
Bourgain's recent paper [3]) the preceding remarks show that whenever
the appropriate real interpolation results hold, the corresponding complex
interpolation results will also hold. Unfortunately, the real interpolation
results do not seem complete enough at the moment to yield the assump
tions needed in the above remarks.
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